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Abstract 

The behaviour of Rogers's r/ parameter for enantio- 
morph-polarity estimation is examined theoretically 
and experimentally on simulated intensity data for 
seven well-assorted compounds. An alternative 
parameter x, based on incoherent scattering from twin 
components related by a centre of symmetry, is also 
considered. It is found that both parameters are very 
well adapted to implementation in a least-squares 
program and converge well. The r/parameter can give 
false and over-precise indications of chirality-polarity 
for structures which are nearly centrosymmetric, 
whereas the x parameter does not have this fault and 
converges more rapidly than r/. 

Introduction 

It is common practice when determining the chirality or 
polarity of a non-centrosymmetric crystal to carry out 
least-squares refinements on the two possible sets of 
atomic coordinates and compare the R factors obtained 
by using Hamilton's R-factor test (Hamilton, 1965). 
Rogers (1981) has pointed to many of the theoretical 
and operational difficulties connected with this method. 
In an attempt to clarify procedures and to produce an 
enantiomorph-defining parameter, which may have its 
own error estimate, he has suggested that a parameter, 
r/, be refined in the least squares along with the scale, 
coordinate, occupation and thermal parameters, r/is a 
multiplicative factor operating on the imaginary 
anomalous dispersion termsf~' to give r/f~' for all atom 
types i. Thus a value of + 1 for r/means that the correct 
enantiomorph or polarity is defined by the set of atomic 
coordinates, whereas a value o f - 1  implies that the 
crystal and the set of atomic coordinates have opposite 
chirality or polarity. 

It will be helpful here to recall briefly one of the 
theoretical difficulties that Rogers (1981) has high- 
lighted in the use of Hamilton's R-factor test. It is 
necessary in such a procedure to specify the number of 
observations used in the test. Seemingly it is common 
practice to take the total number of experimental 
intensities for this value. However, in all data sets 
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(apart from space group_ P1), there are reflections for 
which IF(hkl)l = IF(hkl)l and, for convenience, these 
will be called E reflections. E reflections may arise 
either accidentally or by symmetry in conjunction with 
special values of h, k or / ,  or because only one type of 
atom contributes to the structure factor. In any case, 
reflections of this type contain no information on the 
chirality or polarity of the crystal and hence the 
non-accidental E reflections should not be included in 
the count of the number of observations. It should be 
clear that, for E reflections, IFc(r / = +1)1 = )Fc(r ! = 
-1)1 and Rogers thought that the E reflections would 
thus have no influence on the least-squares deter- 
mination of r/and its error estimate. This would very 
neatly avoid the problem of the count of the number of 
observations in using Hamilton's R-factor test. 

However, it is the purpose of this paper to show 
theoretically and by computer simulations that E 
reflections do influence the least-squares determination 
of r/ and its error estimate. In certain rather drastic 
conditions, a double minimum (at r /~ + 1) can appear 
in the least squares. An alternative parameter x is 
proposed and examined. It has all of the conveniences 
of r/but is completely uninfluenced by E reflections. It 
is capable of a more physical interpretation than r/. 

Theory 

In the following structure-factor analysis, temperature 
factors have been omitted for the sake of simplicity. 
Their presence would in no way alter the conclusions of 
this analysis. Further, and for the same reason, the least- 
squares refinements are considered to be on I FI 2. The 
structure factor for the reflection h, including the 
Rogers parameter r/, may be written 

(fy + f j  + i f;) 
J 

× (cos 2nhr.xj + isin 2nhr.xj), (1) 

where the sum, j, is over all atoms in the unit cell, fy  is 
the atomic scattering factor, f j  and f j '  are the real and 
imaginary parts of the anomalous dispersion and xj is 
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the fractional atomic coordinate vector, all for the j t h  
atom. Defining 

C ' =  E ( f~  + f ; )  cos 27~hr. xy 

S ' =  ~ ( f~  +jr}) sin 2~zhr.xj 
(2) 

C" = ~ Jr}' cos 27th r. xj 

S "  = X f} '  sin 27th r. Xi, 

one finds that 

IF(h,//)l 2 =  (C '2 + S '2) - 2r/(C' S " -  C "  S ' )  

+/ /~ (c  ''~ + s"~). (3) 

Note that IF(h,r/)l 2 ---- IF(--h,--//)l 2. 
The parabolic variation of IF(h,//)l 2 as a function of 

r/is shown in Fig. 1 as full lines for both an E and a 
non-E reflection. As the coefficient of//2, C,,2 + S,,2, is 
non-negative, the nose of the parabola is downwards 
for all reflections. It can be seen that for an E reflection 
the slope of the curve (81FI 2/8//) is finite a t / / =  + 1, and 
hence will contribute in the least-squares normal 
equations matrix at the ideal values of //. The 
derivatives (81FI2/8//) for the non-E reflections are 
affected as well, being different at r/-- + 1. 

Now consider a highly idealized weighted sum of 
squares as a function o f / / f o r  the case of a set of E 
reflections. The observed ' true' values of IFI 2 will be 
taken as IF(h ,+ l ) l  2 and the calculated values as 
IF(h,/1)12. Thus 

S t =  ~ w(h)[IFE(h,//)l 2 -  IFe(h,+ 1)12] 2, (4) 
h 

the subscripts E emphasizing that the sum is for a set of 
E reflections. Substituting (3) into (4), and using the 

relation C ' S "  -- C " S '  = 0, which specifies E 
reflections, one finds 

SE = ( / / 4 - - 2 / / 2  + 1)[~h w(h). [C" (h )2+  S " ( h ) 2 ] ) .  

The variation of S E as a function o f / / i s  shown in Fig. 
2. There are two minima a t / / - -  + 1 of equal depth and 
separated by a maximum at // -- 0 of height 

w(h)[C"(h) 2 + S" (h )  2] above the two minima. Thus 
the value o f / /de te rmined  in a least-squares refinement 
on a set of E reflections will depend on the starting 
value of / / .  It can also be seen that, depending on the 
value of 82SE/8//2 at  the minima, the error estimate of 
r/will be larger or smaller but necessarily finite if not all 
of the f "  are zero. However, E reflections contain no 
information on the chirality or polarity of the crystal, 
and one would like an ideal enantiomorph-polarity- 
defining parameter to have an undefined value when 
refined against a set of E reflections (e.g. a centro- 
symmetric crystal). One can also see from Fig. 2 that 
the double minimum (but now of different depth) can 
persist for non-E reflections. However, with increasing 
differences in IFI 2 between the members of Friedel 
pairs, the double minimum coalesces into a broader 
single minimum. 

In summary,  the functional form of Rogers's enantio- 
morph-polarity parameter // has two undesirable 
features. These are exemplified by reference to E 
reflections but non-E reflections can show similar 
although attenuated behaviour. The features are 

(a) opposite chirality or polarity estimation may be 
obtained in a least-squares refinement depending on the 
starting value; 

IF(h,v) l  2 -- / 
[F(h'x)]2 - - - i ' /  

X~l"- IF(--h)12 IF(h-)12 --" 
./ 

-I 0 IIb 
+1 05 0 x 

Fig. 1. Variation of IF(h,r/)l 2 as a function ofr/, shown as full lines, 
and I F(h,x)[ 2 as a function of x, shown as dotted lines, for an E 
reflection and a non-E reflection in the lower and upper parts of 
the figure, respectively. 

'S(.r/) - - \  " " correct 
S(X) - - - \  ~ enantiomorph 

\ \non-', 

• ~ 

- ' 0 +1 "r/ 
+1 05  0 x 

Fig. 2. Variation of S, the idealized sum of squares, as a function of 
r/(full lines) or x (dotted lines). The lower curves are for a set of 
E reflections whilst the upper three sets of curves, non-E(1), 
non-E(2), non-E(3), are different possibilities for a set of non-E 
reflections. 
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(b) r/will have a finite error estimate where an infinite 
estimate is desired. 

The clue to removing the disadvantages in the r/ 
parameter may be seen by studying Fig. 1. The 
variation of IFc(h)l 2 as a function of the enantio- 
morph-polarity parameter should be linear and the 
straight line should pass through the calculated IFI 2 
values for the members of the Friedel pair. For an E 
reflection this will lead to the I F(h,x)l 2 having a 
constant value of IF(+h)l  2, shown as the dotted line in 
Fig. 1, where x is the new ' improved'  enantiomorph- 
polarity-defining parameter. Further, E reflections will 
not contribute to the error estimate of x as c91FI 2/tgx is 
zero everywhere. The variation of a non-E reflection is 
also shown in Fig. 1 and the sums of squares are shown 
in Fig. 2. 

Formally the x parameter may be defined by 

IF(h,x)lZ = ( 1 -  x)lF(h)l  z + x l F ( - h ) l  z. (5) 

When the atomic coordinate set and the crystal have 
the same chirality or polarity, x takes the value of 0, 
whereas when they are opposed x becomes 1. (5) is in 
fact the equation for the intensity from a twinned 
crystal containing 100(1 - x)% of a component 
represented by the atomic coordinate set and 100x% of 
a component related by a centre of symmetry to this 
set. Clearly, for a centrosymmetric crystal x is 
undefined. The interpretation of (5) based on twinning 
is of more than theoretical interest. Indeed, it is possible 
to obtain crystals where the two enantiomorphs or 
polarities are intergrown in a sample. This would be 
expected to occur more frequently with synthetic than 
with natural products. Hence, it is at least in principle 
possible to produce samples over the whole range of x 
from 0 to 1. This is certainly not the case for the r/ 
parameter as imaginary anomalous dispersion values of 
an arbitrary set of atoms cannot be varied simul- 
taneously as expressed by q. It is due to the twinning 
interpretation that the x parameter has been defined 
with 'correct' and 'incorrect' endpoints of 0 and 1 
rather than 1 and - 1 ,  respectively, of r/. 

Experimental 
Least-squares refinements of r /and x have been carried 
out on seven compounds using computer-generated 
data. Information specific to each compound will be 
found in Table 1. In all cases atomic positional 
coordinates, space group and cell dimensions were 
taken from the quoted source. Isotropic temperature 
factors were assigned as follows: ( 1 0 0 u A  2) O, N, 
3.17; C, 3.80; K, Cs, Th, 0.76; Zr, Si, Ni, Sb, 0.38. 
No hydrogen atoms were included. X-ray scattering 
factors were taken from Cromer & Mann (1968), and 
anomalous dispersion values from In t e rna t iona l  Tables  

f o r  X - r a y  Crys ta l lography  (1974). Cu K a  radiation was 
used for all compounds except  for Th(NO3)4.5H20 
where Mo K a  was employed. 

Data  were generated for each substance by 
producing Fob s from I Fc.)cl by setting IF oh sl = I Fcalc[ + 
A, O2(IFobs l) = (0.03 IFcalcl) 2, where A is a simulated 
statistical fluctuation produced by a pseudorandom 
number generator. The fluctuation follows a Gaussian 
distribution of zero mean and variance trZ(IFobsl). 
Reflections were classified as observed if lobs(= 
LplFobsl2) > t and unobserved if lob s < t (Lp is the 
Lorentz-polarization factor and lob s is the simulated 
observed intensity). Values of t are given in Tables 2 to 
6. Data sets were complete, indicated by w (whole), if 
all reflections in the asymmetric unit of reciprocal space 
of the crys ta l  class were used (i.e. Bijvoet pairs are 
included) or incomplete, marked by h (half), if the 
corresponding Laue symmetry was invoked (i.e. only 
one member of a Bijvoet pair included). 

In the least-squares refinements, a scale factor, the 
non-symmetry-restricted fractional positional coordin- 
ates and an isotropic temperature factor for each atom 
were considered as variables, as well as either the r/or x 
enantiomorph-polarity-defining parameter. The func- 
tion minimized was S = Z wi(IFo, I 2 - lee,12) 2, where 
w i = 1/02(IFol2).  Only observed reflections were used 
in the least squares. The starting values of the atomic 
parameters for the refinements were the same as those 
used to create the data, except in some tests on thorium 

Table 1. Deta i l s  o f  c o m p o u n d s  used  f o r  s imula t ions  

SR means Structure Reports. Type codes are: c centrosymmetric; e enantiomorphous; p polar. The coordinates for compounds 2, 3 and 4 
are those for ammonium hydrogen tartrate but with the cation substituted by potassium, potassium and caesium respectively. 

Space 
Compound Formula Source group Type a (A) b (A) c (A) Z 

1 Potassium hydrogen maleate KC4H304 SR (1961) Pbcm c 4.578 7.791 15.95 4 
2 Potassium hydrogen D-tartrate KC4HsO 6 SR (1958) P212~21 e 7.648 11.07 7.843 4 
3 Potassium hydrogen L-tartrate KC4HsO 6 SR (1958) P212~21 e 7.648 11.07 7.843 4 
4 Caesium hydrogen D-tartrate CsC4HsO 6 SR (1958) P2~2a2~ e 7.648 11.07 7.843 4 
5 Silicon zirconium ZrsSi 4 SR (1968) P41212 e 7.123 - 13.00 4 
6 Thorium nitrate pentahydrate Th(NO3) 4. 5H20 Ueki et al. (1966) Fdd2 p 11-18 22-87 10.57 8 
7 Nickel antimonide NiSb Wyckoff (1965) P63mc p 3.94 - 5.14 2 
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nitrate pentahydrate and all tests on potassium hydro- 
gen L-tartrate. 

All calculations were performed with the XRAY76 
system of programs (Stewart, Machin, Dickinson, 
Ammon,  Heck & Flack, 1976). The changes necessary 
to the least-squares program CRYLSQ in order to 
refine the parameter x are based entirely on a patch 
modification by Schwarzenbach, see Thong & Schwar- 
zenbach (1979), for treating twinned crystals. The 
refinement of r/is achieved by using t h e f "  of a dummy 
atom of zero population as the variable t/ and 
constraining the other f " s  to vary with the dummy. 
The only facility lacking in XRAY76 for t/refinement 
was the possibility to constrain anomalous dispersion 
terms. All calculations were performed on a Univac 
1100/61 with a representation of real values on 36 
binary bits of which 27 are used for the mantissa. 

In Tables 2 to 6, some results of the simulations are 
to be found. In order to make the comparison of the x 
and r/refinements easier, the values of r /and a(r/) have 
been transformed by 

r/' = - ( r / -  1)/2, tr(r/') = tr(rl)/2, 

which gives r/' in the same range and interpretation as x 
(i.e. r/' = 0, correct; t/' = 1, incorrect, chirality or 
polarity). 

R and G are defined as 

Z ( IFobs l -  IFca,cl) 
R =  

IFobsl 

G = Wl( IFobs ,  I 2 -  IFcalc 12) 2 / ( N - -  m) , 

where N is the number of observations and m the 
number of variables. 

Table 2 shows the results on simulations with 
compound 1, centrosymmetric. The x refinements 
converge rapidly (two to three cycles), regardless of 
starting value, to give a very large error estimate (136) 
on x. This error estimate, like the actual value of x 

obtained, is entirely due to rounding errors. On the 
other hand, refinements of r/starting with r/' < 0 .5 ( r />  
0) or r/' > 0 . 5 ( r /<  0) converge (more slowly than x) to 
a very precise indication of r/' = 0 ( r / =  1) or r/' = 1 
(r/ = - 1 ) ,  respectively. With r/' --- 0.5 (r/ = 0) as 
starting value, the diagonal term corresponding to r/ 
of the least-squares normal-equations matrix calculated 
exactly as 0 and refinement of this parameter could 
not proceed. 

For compounds 2 and 3, potassium hydrogen D- and 
L-tartrate, the refined values of x and r/ were inde- 
pendent of the starting values (the same as used for 
compound 1 in Table 2). All refinements gave approxi- 
mately the same values of R (0.023) and G (0.95), and 
again the convergence of x was more rapid than r/. For 
the L compound, the coordinates of the D enantiomorph 
were used in the refinements. Compound 2 gave refined 
values of x -- 0.013 (10) and r/' -- 0.007 (10) and 
compound 3 gave x -- 1.0003 (10) and r/' --- 1.009 (10) 
for the following characteristics, data set w,(sin 0//l,)max 
= 0.6 :k -l ,  threshold t = 10.0, 1173 observations and 
46 variables. 

Table 3 contains the results on simulations with 
compound 4, caesium hydrogen D tartrate. Again, 
refined values were independent of the starting values of 
x or r/, and x converges faster than r/. In this case the 
effect of changing the maximum value of sin 0/2 has 
been examined. The same remarks apply for the results 
on compound 5, ZrsSi 4, shown in Tables 4(a) and (b), 

Table 3. Simulations on compound 4, caesium 
hydrogen D-tartrate 

Data set: w; Cu Ka;  threshold, t, 30.0;  46 variables. 

Refined values 
sin 0/2ma x 

(/k - l )  x r/' G R Nob s 

0.3 --0.002 (32) 0.017 (26) 0.989 0.021 150 
0.4 --0.002 (19) --0-010 (12) 0.946 0.023 356 
0.5 -0 .013 (13) -0.011 (10) 0.937 0.023 680 
0.6 -0 .002 (11) -0 .002 (9) 0.946 0.023 1167 

Table 2. Simulations on compound 1, centrosymmetric 

Data  set: w; (sin 0/,~)max , 0.6 A-~; Cu Kct; threshold, t, 12.0; 432 
observed reflections and 20 variables. E.s.d.'s are given in paren- 
theses. R and G are defined in the text. 

Starting 
value of  Refined value 

Variable x or r/' o f  x or r/' R G 

x 0.0 -106.  (136) 0.022 0.894 
x 0.5 -106.  (136) 0.022 0.894 
x 0.625 -106.  (136) 0.022 0.894 
x 1.0 -106.  (136) 0.022 0.894 
r/ 0.0 -0 .007 (22) 0.022 0.895 
r/ 0.375 -0 .007 (22) 0.022 0-895 
r/ 0.5 0.5 0.023 1.035 
q 1.0 1.007 (22) 0.022 0.895 

Table 4. Simulations on compound 5, ZrsSi 4 

Refined values 
sin 0/2ma x 

(A-  l) x r/' G R Nob s 

(a) 

(b) 

Data set: w; Cu Kct; threshold 40.0; 20 variables 

0.3 0.01 (21) -0 .02  (19) 1.015 0.025 71 
0.4 0.01 (9) -0-01 (8) 0.897 0.022 166 
0.5 0.032 (44) 0.035 (42) 0.913 0.022 329 
0.6 -0.018 (34) -0 .012 (32) 0.912 0.023 575 

Data set: h; Cu Kct; threshold 40.0; 20 variables 
0.3 0.11 (31) 0.07 (27) 0.920 0.021 55 
0.4 0.04 (12) 0.01 (10) 0.901 0.024 119 
0.5 -0 .02  (6) -0-02 (5) 0.881 0.023 223 
0.6 0.003 (40) 0.006 (40) 0.885 0.023 375 
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where the effect of w and h data sets is also 
investigated. 

Tables 5(a) and (b) present the results for the polar 
compound 6, thorium nitrate pentahydrate. Starting 
values have no effect on refined values here. The 
refinements on the w data set were made with the z 
coordinate of the thorium atom fixed, starting coordin- 
ates being those used to generate the data set. For the h 
data set, refinements were made with z(Th) both fixed 
and variable and found to give identical results in all 
cases. Moreover, the starting coordinates were 
generated by carrying out a preliminary refinement 
with (sin 19/2)max = 0.6 A -~ from the model coor- 
dinates but fixing r /=  - 1  (x --- 1). This gives the worst 
possible bias to the starting coordinates. 

The final compound, NiSb, number 7, studied in 
these simulations is polar of structure type NiAs and 
may be used to represent a gradual transition from 
centrosymmetry to polarity. The point positions of 
atoms in a NiAs-type structure are 

R(Ni) 2(a) 0,0,z 0, 0, ½ + z 

X(As)  2(c) ½ + z, 

and taking z(Ni) arbitrarily as 0, one finds z(As) ~_ 0.25. 

Table 5. Simulations on compound 6, Th(NO3)4.5H20 

Refined values 
sin O/~.ma x 

(A-') x •' G g NoDs 

(a) Data set: w; Mo Ka; threshold 100; 45 variables 
0.3 -0.021 (45) -0.018 (46) 0.889 0.018 145 
0.4 --0.001 (33) -0-007 (34) 0.919 0.022 339 
0.5 -0.005 (28) -0.010 (29) 0.936 0.023 683 
0.6 -0.007 (25) -0.008 (26) 0.948 0.023 1150 

(b) Data set: h; Mo Ka; threshold 100; 45 or 46 variables 
0.3 0.17 (14) 0.15 (13) 0.770 0.015 87 
0.4 0.13 (11) 0.11 (11) 0.938 0.021 195 
0.5 0.01 (8) 0.03 (8) 0.914 0.022 381 
0-6 0.01 (6) 0.04 (7) 0-908 0.022 631 

However, with z(As) = 0.25, the structure becomes 
exactly centrosymmetric. Table 6 gives the results of 
simulations on five different data sets generated with 
various values of z(Sb) and z(Ni) -- 0. z(Sb) was fixed 
as a parameter at the model value in the refinements 
but z(Ni) was allowed to vary. Refined values of r/' are 
dependent on starting values in this case. 

Discussion 

Considering the results obtained on compounds 1 and 7 
which are centrosymmetric or nearly so, it will be seen 
that the x and r/parameters behave in the manner to be 
expected from theory, x estimation gives rise to a single 
value with a very large error indicating that polarity is 
either badly or completely undefined, r/ estimation, 
however, gives rise to two possible values, depending 
on where the refinement is started, and the associated 
error estimates are very small, indicating a very 
precisely defined polarity. In contrast, in all the other 
tests, both x and r/refine, independent of the starting 
value, to a single value which is within 1.5 estimated 
standard deviations of the known 'correct' value. The 
tests which limit (sin 0/2)ms x or which use compound 5 
with space group P412~2 are intended to increase the 
proportion of E reflections in the data set and hence to 
produce the greatest effect on the r/parameter. Limiting 
sin 0/2 also reduces the relative influence o f f "  on the 
structure factors. The same objective was followed in 
the tests on compound 6, by not only limiting sin 0/2 
but by using an incomplete data set in conjunction with 
biased starting parameters, as Ueki, Zalkin & Tem- 
pleton (1966), Cruickshank & McDonald (1967) and 
Templeton, Templeton, Zalkin & Ruben (1982) have 
shown how incorrect polarity produces coordinate 
shifts in such situations. One needs to go even further 
than this, however, as in the tests on compound 7, to 
produce incorrect results on r/ although x remains a 
reliable estimate in all the tests performed here. 

Table 6. Simulations on compound 7, NiSb 

Data set: w; Cu Kct; threshold 500; 5 variables; 33 observations. (sin O/;t)max 0.6 i -1. R values in range 0.024 to 0.026. G values in range 
0-965 to 1-008, z(Sb) fixed. 

Starting Refined values 
value of  

z(Sb) x or t/' x t/' 

0.250 0.0 * -0.29 (24) 
0.250 1.0 * 1.29 (24) 
0.245 0.0 0.69 (48) -0 .30 (24) 
0.245 1.0 0.68 (43) 1.30 (24) 
0.240 0.0 0.42 (23) 0.37 (20) 
0.240 1.0 0.42 (23) 1.32 (27) 
0.230 0.0 0.24 (13) 0.21 (13) 
0.230 1.0 0.24 (13) 0.21 (13) 
0.200 0.0 0.079 (70) 0.073 (73) 
0.200 1.0 0.079 (70) 0.073 (73) 

• The e.s.d, was practically too large for the machine precision as the 

z(Ni) z(Ni) 
x variable r/variable 

0.0091 (66) -0.0051 (26) 
0.0091 (66) 0.0051 (26) 
0.0031 (57) --0.0082 (26) 
0.0031 (57) --0.0018 (26) 
0.0019 (39) 0.0029 (36) 
0.0019 (39) --0.0076 (31) 
0.0014 (24) 0.0018 (23) 
0.0014 (24) 0.0018 (23) 
0-0021 (13) 0-0022 (13) 
0.0021 (13) 0.0022 (13) 

least-squares matrix was 'almost' singular. 
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In general, the estimated standard deviation of x is 
larger than the corresponding value of r/. This is 
particularly noticeable in data sets with a large 
proportion of E reflections such as those with a low 
sin 0/4 cut-off. When the proportion of E reflections 
diminishes or the Bijvoet differences become large, the 
error estimates of x and r/are practically identical but 
with a slight tendency for those of r/to be larger than 
those of x. This latter effect may be due to the sum of 
squares for r/refinement depending on 0 4 and for x only 
on x 2. The curve o f y  = x 4 has a flatter minimum than 
that of y = x 2 as may be seen in Fig. 2 for data set 
non-E(3). 

In all cases it has been observed that the refinement 
with x converges more rapidly than with r/. The 
refinements carried out here were on IFI 2 and from (5) 
and (3) it can be seen that x is a linear function, and r/a 
quadratic function of IFI 2. It is thus not surprising that 
x should converge faster than r/. With refinements on 
IF1, I FI becomes a non-linear function of either x or r/ 
and the difference in speed of convergence may be less 
marked. 

Suisse Romande and presented by Professor D. H. 
Templeton in the autumn term of 1982 at the 
University of Lausanne helped the author immensely in 
the work described above. The lecturer and the 
organizers are thanked for their contribution to this 
paper. 

The Centre Universitaire d'Informatique of the 
University of Geneva is thanked for the use of the 
Univac 1100/61, and so too are Mrs I. Jequier who 
typed the manuscript and Mrs B. Kiinzler who finished 
the preparation of the figures. 

Note added in proof" The refinement of the enantio- 
morph-polarity parameter x has now been added as a 
permanent feature in our implementation of the 
X-RAY76 system. The current version allows refine- 
ment on IFI, IFI 2 or I, and x is varied automatically in 
the final stages of refinement with a non-centro- 
symmetric structure. Coordinate constraint(s) for polar 
space groups are now automatically generated. Users 
of X-RAY72 or X-RAY76 are invited to write to the 
author for details. 

Coneluslon 

Rogers's suggestion of a continuous variable for 
enantiomorph-polarity estimation is highly suited to 
automatic computation. A simple logical switch based 
on centrosymmetry could easily be used to key the 
refinement of such a variable. This would help to avoid 
the bias in published atomic coordinates such as has 
been revealed by Templeton, Templeton, Zalkin & 
Ruben (1982). Rogers's exceedingly valuable contri- 
bution has presumably not met with the widespread use 
that it deserves due to the nonavailability of suitable 
programs. To the present day and to the author's 
knowledge only two papers have been published in 
which r/refinement has been used (Hanson, Rivett, Ley 
& Williams, 1982; Mara, Singh, Thomas & Williams, 
1982). 

It would seem, however, that Rogers has erred in his 
choice of enantiomorph-polarity parameter and that x 
as defined in (5) is to be preferred as being faster and 
more reliable than r/. 

A series of lectures on Anomalous X-ray Scattering 
organized by the Troisi6me Cycle de la Physique en 
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